Polymerization of 1, 3-Butadiene by Biscyclopentadienylnickel Compounds

Yoshio Tajima and Etsuo Kunioka

Central Research Laboratories, Toyo Rayon Co., Ltd., Otsu, Shiga (Received September 17, 1966)

The polymerization of 1, 3-butadiene by a binary catalyst system of a biscyclopentadienylnickel compound and an organoaluminum compound has been studied. The nickel π -complexes used in the experiments were biscyclopentadienylnickel bromide (Cp₂NiBr₃), biscyclopentadienylnickel diammonotetrathiocyanochromate (Cp₂Ni-(NH₃)₂Cr(NCS)₄), and biscyclopentadienylnickel tetraphenylborate (Cp₂NiBPh₄).

In an autoclave (100 ml volume), 50 ml of toluene as a solvent, 30 ml of liquid butadiene, 0.1 g of a nickel π -complex, and 1 ml of an organo-aluminum compound (AlEt₃, AlEt₂Cl, or AlEtCl₂)

were taken into an inert atmosphere. The reaction was then carried out at 110°C for 2 hr. After the termination of the reaction (by the addition of 10 ml of acetone), the products were analyzed. The results are shown in Table 1 and Table 2.

When the Cp₂NiX-AlEt₃ catalyst system was used, cyclooligomerization predominantly occurred, and cyclodimers (vinylcyclohexene and cyclooctadiene) and a cyclotrimer (cyclododecatriene) were produced. In the case of AlEt₂Cl or AlEt-Cl₂, polymerization occurred, but the catalytic activity of Cp₂NiX-AlEtCl₂ systems was much inferior to that of Cp₂NiX-AlEt₂Cl systems. The

TABLE I. Cp2NiX-AlEt3 CATALYSTS SYSTEM

Catalyst component	Conversion %		Content (%) of products		
		$\widetilde{\text{V}\cdot\text{H}}$	COD	CDT	Redidue
Cp ₂ NiBr ₃ -AlEt ₃	89.0	14.5	24.2	47.3	14.0
Cp ₂ Ni(NH ₃) ₂ Cr(NCS) ₄ -AlEt ₃	75.6	13.9	26.5	12.0	12.0
CP2NiBPh4-AlEt3	78.6	12.6	24.8	48.5	13.6

V·H: Vinylcyclohexene COD: Cyclooctadiene CDT: Cyclododecatriene

Table 2. Cp₂NiX-AlEt₂Cl (or AlEtCl₂) catalysts system

Catalyst component	Yield (%) of polymer formed	Microstructure (%) of polymer formed			[η]
		1.4 cis	1.2 cis	1.4 trans	[//]
Cp ₂ NiBr ₃ -AlEt ₂ Cl	80.1	75.1	2.2	22.8	0.34
Cp ₂ NiBr ₃ -AlEtCl ₂	15.1	74.8	4.5	20.7	0.16
Cp ₂ Ni(NH ₃) ₂ Cr(NCS) ₄ -AlEt ₂ Cl	70.5	76.5	6.2	17.3	0.13
Cp ₂ Ni(NH ₃) ₂ Cr(NCS) ₄ -AlEtCl ₂	11.7	75.2	7.8	17.0	0.11
Cp2NiBPh4-AlEt2Cl	63.2	75.2	4.5	20.3	0.28
Cp ₂ NiBPh ₄ -AlEtCl ₂	9.8	78.9	7.5	13.6	0.20

[η]: Determined at 30°C in toluene solution.

 $[\eta]$: Intrinsic viscosity

microstructure of the polymer formed was determined by a study of its IR spectra. In each case of polymerization, 1.4 cis addition occurred mainly.

Biscyclopentadienylnickel bromide was prepared¹⁾ by oxidizing nickelocene in petroleum ether with Br₂. Biscyclopentadienylnickel tetraphenylborate or

biscyclopentadienylnickel diammonotetrathiocyano chromate was prepared¹⁾ by reacting $(C_5H_5)_2NiBr_3$ with NaBPh₄ or NH₄Cr(NCS)₄(NH₃)₂.

¹⁾ E. O. Fischer and W. Hafner, Z. Naturforsch., 217 (1953); G. L. Hobbs, Brit. Pat. 733129 (1955).